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1  | INTRODUC TION

The course of children's development is mapped by milestones in 
domains including motor, social, language, and cognition. Patterns of 
growth may vary widely, as factors such as culture or environment 
can greatly impact developmental trajectories. Neurodevelopmental 
disorders are heterogeneous conditions characterized by a delay or 
disruption in the acquisition of skills within these developmental do‐
mains (Levy, 2018). Common diagnoses include intellectual disabil‐
ity (ID), attention deficit hyperactivity disorder (ADHD), and autism 

spectrum disorder (ASD). Although there is wide variation in trajec‐
tories of typical development, particularly during the first 3 years of 
life, early identification of atypical behaviors or developmental delay 
is important, as this could lead to prompt intervention efforts.

As early identification is key, many researchers have investigated 
possible brain‐based biomarkers for neurodevelopmental disorders 
(e.g., Dudley, Häßler, & Thome, 2011; Goldani, Downs, Widjaja, 
Lawton, & Hendren, 2014; Hsiao et al., 2013; Jeste, Frohlich, & Loo, 
2015; Reeb‐Sutherland & Fox, 2015; Varcin & Nelson, 2016), but 
a consensus has not yet been reached on the best methodologies. 

 

Received: 4 September 2018  |  Revised: 15 March 2019  |  Accepted: 24 April 2019
DOI: 10.1002/dev.21870  

R E S E A R C H  A R T I C L E

Neonatal EEG linked to individual differences in socioemotional 
outcomes and autism risk in toddlers

Natalie H. Brito1  |   Amy J. Elliott2,3 |   Joseph R. Isler4 |   Cynthia Rodriguez5 |   
Christa Friedrich2,3 |   Lauren C. Shuffrey5,6 |   William P. Fifer4,5,6

1Department of Applied Psychology, New 
York University, New York, New York
2Center for Pediatric & Community 
Research, Avera Research Institute, Sioux 
Falls, South Dakota
3Department of Pediatrics, University of 
South Dakota School of Medicine, Sioux 
Falls, South Dakota
4Department of Pediatrics, Columbia 
University Medical Center, New York, New 
York
5Division of Developmental 
Neuroscience, New York State Psychiatric 
Institute, New York, New York
6Department of Psychiatry, Columbia 
University Medical Center, New York, New 
York

Correspondence
Natalie H. Brito, New York University, 
Kimball Hall 407W, 246 Greene Street, New 
York, NY 10003.
Email: natalie.brito@nyu.edu

Funding information
National Institute of Mental Health, Grant/
Award Number: T32MH016434-40; 
Rita G. Rudel Foundation, Grant/Award 
Number: Rita G. Rudel Prize; National 
Institutes of Health, Grant/Award Number: 
R00HD086255-03, R37 HD032774, 
U01 HD045935, U01 HD55155 and 
UL1TR000040

Abstract
Research using electroencephalography (EEG) as a measure of brain function and 
maturation has demonstrated links between cortical activity and cognitive processes 
during infancy and early childhood. The current study examines whether neonatal 
EEG is correlated with later atypical socioemotional behaviors or neurocognitive de‐
lays. Parental report developmental assessments were administered to families with 
children ages 24 to 36 months who had previously participated in a neonatal EEG 
study (N = 129). Significant associations were found between neonatal EEG (higher 
frequencies in the frontal polar, temporal, and parietal brain regions) and BITSEA 
ASD risk scores. Infants with lower EEG power in these brain areas were more likely 
to have higher risk of socioemotional problems. When examining sex differences, 
significant links were found for males but not for females. These results demonstrate 
some promising associations between early neural biomarkers and later risk for atypi‐
cal behaviors, which may shape early neurobehavioral development and could lead to 
earlier identification and intervention.
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Electroencephalography (EEG) may be a possible candidate. There 
is heterogeneity in the underlying genetic and environmental path‐
ways, but hypothesized mechanisms of neurodevelopmental dis‐
orders include atypical neural connectivity due to disruption of 
cortical excitation/inhibition balance and abnormalities of cortical 
interneurons and/or gamma‐aminobutyric acid (GABA) receptors 
(Dani et al., 2005; Levitt, Eagleson, & Powell, 2004; Rubenstein, 
2010; Wang et al., 2013). As EEG is a sensitive measure of cortical 
function, reflecting locally synchronous transmembrane currents in 
pyramidal neurons, this direct measure of the brain can index under‐
lying neural activity with great temporal resolution; allowing for pos‐
sible delineation between typical and atypical neurodevelopment. 
Additionally, EEG recordings are cost‐effective and can be collected 
with difficult populations (e.g., infants, children with special needs) 
in a variety of settings.

Previous prospective studies have investigated the associa‐
tion between EEG power and later cognitive development. Gou, 
Choudhury, and Benasich (2011) reported significant associations 
between baseline EEG gamma power (31–50  Hz) during toddler‐
hood and individual differences in language and cognition during 
preschool (Gou et al., 2011). Examining links between neonatal EEG 
and cognitive outcomes at 15 months, Brito, Fifer, Myers, Elliott, 
and Noble (2016) found that, independent of socioeconomic status, 
higher frontal gamma power (24–48 Hz) was significantly correlated 
with better recognition memory and that higher parietal gamma 
power (24–35  Hz) was significantly related to increased scores in 
language comprehension. Finally, in a higher‐risk sample of infants 
born with congenital heart disease, Williams et al. (2012) observed 
significant correlations between neonatal EEG and Bayley cognitive 
scores (BSID‐III) at 18 months, with higher frontal power in beta (12–
24 Hz), low‐gamma (24–35 Hz), and gamma (36–48 Hz) frequencies 
associated with higher cognitive scores.

In typically developing children, there is a developmental de‐
crease in EEG power of low‐frequency rhythms (e.g., delta and theta) 
and an increase in high‐frequency oscillations (e.g., beta and gamma) 
across different ages (Matousek & Petersen, 1973). Relative to typ‐
ically developing children, children with learning or attention disor‐
ders often demonstrate higher levels of low‐frequency power and 
lower levels of high‐frequency power (Barry, Clarke, & Johnstone, 
2003). For example, Tierney, Gabard‐Durnam, Vogel‐Farley, Tager‐
Flusberg, and Nelson (2012) reported that 6‐month‐olds who were 
at high risk for ASD (younger siblings of children with ASD) demon‐
strated lower EEG power in the frontal lobe across all frequency 
bands, compared to their low‐risk peers. Although group differ‐
ences in delta (2–4 Hz), theta (4–6 Hz), and beta (13–30 Hz) bands 
disappeared by age 2, EEG power in alpha (6–13  Hz) and gamma 
(30–50 Hz) bands remained lower for high‐risk infants compared to 
their lower‐risk peers. Levin, Varcin, O'Leary, Tager‐Flusberg, and 
Nelson (2017) reported significant differences in frontal EEG power 
at 3 months of age for infants at high versus low risk for ASD, with 
infants in the high‐risk group demonstrating reduced power in both 
high‐alpha (9–13  Hz) and beta (13–30  Hz) frequency bands. Links 
between 3‐month frontal high‐alpha power and expressive language 

scores at 12 months of age were also found, with reduced high‐alpha 
power associated with poorer expressive language scores. No sig‐
nificant correlations were detected between 3‐month baseline EEG 
and cognitive/language scores at 18, 24, or 36 months of age.

These studies demonstrate that early EEG activity may be a useful 
tool in identifying neurodevelopmental risk, specifically ASD, before 
overt behavioral symptoms are observable. ASD is a neurodevelop‐
mental disorder characterized by impairments in social interaction, 
communication, and the presence of stereotypic behaviors or re‐
stricted interests (DSM‐IV, 2013). Past studies have reported links 
between ASD and difficulties in learning, attention, and sensory pro‐
cessing (Johnson & Myers, 2007); ASD is reported to occur in all racial, 
ethnic, and socioeconomic groups (Durkin et al., 2010), but is much 
more common among boys (1 in 42) than among girls (1 in 189) (Baio, 
2014). Although sex differences are present in many developmental 
disorders, sexual dimorphism also exists in typical development. Prior 
research has demonstrated sexual dimorphism of human brain mat‐
uration beginning in the fetal period and extending throughout early 
postnatal development (De Lacoste, Horvath, & Woodward, 1991; 
Giedd, Castellanos, Rajapakse, Vaituzis, & Rapoport, 1997). Sex dif‐
ferences have been demonstrated in EEG coherence where females 
demonstrate higher intrahemispheric coherence than males across 
all frequency bands apart from alpha (Clarke, Barry, McCarthy, & 
Selikowitz, 2001; Marosi et al., 1993). Principal component analysis of 
EEG coherence across development has revealed synchronized EEG 
coherence in females is concurrently associated with cognition and so‐
cial skills whereas for males this link was found for cognitive skills only 
(Hanlon, Thatcher, & Cline, 1999). In infants at‐risk for autism, males 
have been shown to demonstrate higher resting state EEG power than 
females in higher frequencies (13–50 Hz) (Tierney et al., 2012).

Several studies have investigated links between ASD risk/diagno‐
sis and EEG activity, but there have not been any studies using pro‐
spective samples from birth. The current study examined associations 
between neonatal EEG and later cognitive and socioemotional out‐
comes, including ASD risk, in a community sample of toddlers aged 
24–36 months. The median age of ASD diagnosis is often not until 
age 4, with lower socioeconomic status associated with later diagno‐
sis. Yet, CDC statistics suggest that 80% of parents are expressing 
concerns about their children by age 2 (Centers for Disease Control & 
Prevention, 2009). Here we focus on ASD as (a) infants at risk for ASD 
are often also at risk for other neurodevelopmental disorders (Jones, 
Gliga, Bedford, Charman, & Johnson, 2014), (b) behavioral symptoms 
characteristic of ASD typically appear between 12 and 24  months 
(American Psychiatric Association, 2000), and (c) parent report mea‐
sures like the Modified Checklist for Autism in Toddlers (MCHAT‐R/F) 
and Brief Infant Toddler Social Emotional Assessment (BITSEA) have 
been utilized as Level I screeners (identify children who are at‐risk in 
the general population) for ASD (Gardner et al., 2013; Robins et al., 
2014). We hypothesized that neurodevelopmental risk would be as‐
sociated with lower EEG power for higher frequencies (13–48 Hz), pri‐
marily in the frontal and parietal lobes at birth. We also hypothesized 
that the association between EEG power at birth and neurodevelop‐
mental disorder risk would be sexually dimorphic.
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2  | METHODS

2.1 | Participants

Participants were selected from a subset of infants participating in 
a large, longitudinal study investigating the relation between prena‐
tal exposures and birth outcomes (Dukes et al., 2014). The present 
study took place at participating clinic sites in an urban Midwest 
community. The final sample included 129 infants (55 males; ges‐
tational age at birth M: 39.4 weeks, SD: 1.1) who had both neonatal 
EEG and later developmental assessments. Data were collected 12 
to 96 hr after birth, then again between 24 and 36 months of age 
(M: 30.29 months, SD: 4.28). Participants were excluded from par‐
ticipating in the present study on the basis of birth before 37 weeks’ 
gestation, multiple births, or NICU admission. All caregivers pro‐
vided informed consent for their family's participation in this study. 
Research procedures were approved by the Columbia University 
Medical Center IRB and the Sanford Health IRB.

2.2 | Measures

2.2.1 | Respiration and IBR

Respiration waveforms were collected by means of a respiratory 
inductance belt (Ambulatory Monitoring Inc., Ardsley, NY) and 
were digitized at 20 samples per second. The respiration waveform 
was then smoothed with a three‐sample moving average and cus‐
tom software (Ledano Solutions, Inc.) was used to mark the peaks. 
Marked peaks were verified by visual inspection and corrected if 
needed. Breath‐to‐breath intervals derived from subtracting succes‐
sive peak times were then inverted to produce the instantaneous 
breathing rate (IBR). IBR values greater than five times the interquar‐
tile range from the median were considered outliers and removed.

2.2.2 | Sleep States

For each minute, the variance of IBR was used to determine sleep 
state using the quantitative method described in Isler, Thai, Myers, 
and Fifer (2016). Briefly, IBR variance is much higher during active 
sleep (AS) than in quiet sleep (QS). Isler et al. (2016) used data from 
three separate laboratories to find an optimal threshold of IBR vari‐
ance that dichotomized AS from QS with the highest concordance to 
sleep state coded more traditionally.

2.2.3 | Neonatal EEG

While the infant was asleep, electroencephalogram (EEG) data were 
collected using a hybrid system of a 28‐lead high‐impedance elec‐
trode net (Electrical Geodesics, Eugene OR) and a miniature amplifier 
and recording device (ATES, Colognola ai Colli, Italy). The EEG net 
was soaked for 5 to 10 min in a saline solution before being placed on 
the infant's head, ensuring all EEG leads were properly placed with 
good scalp contact and secured with a chinstrap. When checking for 
impedance, at least 26 electrodes needed to be less than 50 kOhms. 

If the other 1–2 electrodes were less than 75 kOhms, then data ac‐
quisition proceeded. EEG was recorded for 10 min with the baby in 
the supine position followed by three 45‐degree head‐up tilts of ap‐
proximately 2.75 min duration with approximately 2.75 min between 
successive tilts. During recording, the EEG voltage from each lead 
referenced to the vertex electrode was recorded through a hard‐
ware filter (96 Hz low‐pass) and digitized with 16 bits per sample at a 
rate of 250 samples per second. After recording, data were bandpass 
filtered in software with a 16,000‐order finite impulse response fil‐
ter with passbands of 0.1 Hz to 58 Hz and 62 Hz to 118 Hz to avoid 
AC line noise frequencies.

EEG power spectra were computed for 60 s epochs using the 
Welch method, averaging over fast Fourier transforms (FFTs) taken 
each second (Bendat & Piersol, 2000). Data were demeaned and a 
Hanning window was applied prior to computing the FFT for each 
second. To determine the leads and times contaminated by move‐
ment‐related or other sources of electrical artifact, we applied mul‐
tiple criteria on a second by second basis to data from each lead. 
Criteria were as follows: standard deviation of voltage less than 
50 µV and greater than 0.001 µV; sample‐to‐sample change less than 
50 µV; absolute value of voltage less than 300 µV; log‐log spectral 
slope of raw data between 20 and 120 Hz less than −0.1 (to screen 
for muscle artifact); log‐log spectral slope of raw data between 10 
and 30 Hz less than −1 (to screen for ECG artifact). If more than five 
leads had artifact during any one second, that second was excluded. 
Remaining data were re‐referenced to the average over all leads at 
each sample. Finally, minute by minute power was the average of 
the squared FFT's over the accepted seconds, requiring at least 30 
acceptable seconds per minute for each lead.

Average power was calculated for 12 scalp regions (left frontal 
polar, right frontal polar, left frontal, right frontal, left central, right 
central, left parietal, right parietal, left temporal, right temporal, 
left occipital, and right occipital). Minute by minute EEG power was 
aligned with simultaneous sleep state codes and averaged over AS 
and QS minutes within each study. The natural log was taken of EEG 
power for all analyses. Higher frequencies (13–36 Hz) in six bands 
(13–15 Hz, 16–18 Hz, 19–21 Hz, 22–24 Hz, 25–36 Hz, and 37–48 Hz) 
were analyzed as higher frequencies have been correlated to have 
irregular power spectra, showing reduced power spectra in children 
at risk for developmental delays when compared to typically devel‐
oping children (Brito et al., 2016; Gou et al., 2011; Tierney et al., 
2012; Tomalski et al., 2013).

2.2.4 | Developmental assessments at  
24–36 months

Three developmental assessments were given over the phone to the 
parents of the subjects who participated in the neonatal EEG study 
once they aged into the 24‐ to 36‐month range. This follow‐up study 
was designed after the completion of the neonatal data collection. To 
increase the number of participants at the second‐time point, paren‐
tal self‐report measures were selected rather than observer‐rated 
measures as many families had moved out of the immediate area 
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and were unable to return for a lab visit. The phone assessments, 
administered by trained research assistants, took 45 to 60  min to 
complete. Any outliers were winsorized.

2.2.5 | The modified checklist for autism in toddlers

The Modified Checklist for Autism in Toddlers, Revised with 
Follow‐Up (M‐CHAT‐R/F), is a 20‐item (yes or no) guardian/paren‐
tal report checklist (Robins et al., 2014; Robins, Fein, Barton, & 
Green, 2001). Questions pertain to a child's social, communica‐
tive, and play behaviors (e.g. “Does your child try to attract your 
attention to his/her own activity?” “Does your child enjoy playing 
peek‐a‐boo/hide‐and‐seek?”), as well as other behaviors that are 
associated with ASD (e.g. “Does your child ever seem oversensi‐
tive to noise?”). The M‐CHAT is validated to screen children be‐
tween 16 and 30 months for early signs of ASD or developmental 
delay. Risk classifications include: low risk (total score: 0–2; re‐
quires no further evaluation unless other risk factors are present), 
medium risk (total score: 3–7; requires administration of the M‐
CHAT‐Follow‐Up to determine whether referrals are warranted), 
and high risk (total score: 8–20; warrants immediate referral for 
evaluation and intervention). The M‐CHAT is designed to maxi‐
mize sensitivity for ASD, meaning that there will be a high false 
positive rate; most (80%–90%) of children who fail the M‐CHAT 
will not be diagnosed with ASD, but importantly, these children 
are at risk for other developmental delays (Chlebowski, Robins, 
Barton, & Fein, 2013).

2.2.6 | The brief infant toddler social emotional 
assessment (BITSEA)

The BITSEA is a quick and efficient tool to evaluate poten‐
tial risk for social and emotional developmental problems or 
delays in competence among children 12 to 36  months of age 

(Briggs‐Gowan & Carter, 2002). The assessment contains 42 
questions, each requiring one of three responses: true/rarely, 
somewhat true/sometimes, or very true/often. The assessment 
gives two scores: total problem score and total competence score. 
This parental report measure of socioemotional ability has been 
found to significantly correlate with evaluator ratings of infant 
competence and internalizing problems, as well as experimenter 
conducted assessments measures like the Infant Mullen Scales 
of Early Learning and Vineland Adaptive Behavior Scales for 
Children (Briggs‐Gowan & Carter, 2007). Although the BITSEA 
was developed to identify a broad range of behavior problems, 
it also incorporates autism‐specific items. The BITSEA ASD risk 
score was calculated using 17 of the questions (each question 
scoring 0–2) on the assessment that relate directly to behaviors 
typical of ASD.

2.2.7 | The parent report of children's abilities‐
revised (PARCA‐R)

The PARCA‐R is an assessment for examining potential risk for lin‐
guistic and cognitive development delays in toddlers (Blaggan et al., 
2014). The caregiver report consists of multiple sections to assess 
language and cognition. Sections of the report include nonverbal 
cognition (34 questions), vocabulary (list of 100 common words), and 
sentence complexity (12 questions). The vocabulary and sentence 
complexity scores were summed to create the linguistic score.

3  | RESULTS

3.1 | EEG power not associated with MCHAT‐R/F or 
PARCA‐R scores

All subsequent analyses controlled for sex, gestational age at birth, 
maternal education, age at the time of toddler assessments, and 
prenatal exposures to alcohol, cigarettes, recreational drugs, or 
psychiatric drugs. Descriptive statistics for variables of interest are 
provided in Table 1. EEG power was analyzed separately for data 
during active and quiet sleep. EEG Power in quiet sleep was not 
significantly associated with any of the outcomes of interest. This 
may possibly be due to less EEG data during quiet sleep, as neonates 
spend much more of their time in active versus quiet sleep (Barnard, 
1999). Therefore, in the subsequent results only EEG power in active 
sleep will be reported. After controlling for covariates, neonatal EEG 
was not significantly associated with MCHAT‐R/F, PARCA‐R cogni‐
tive, or PARCA‐R linguistic scores.

3.2 | EEG power associated with BITSEA ASD 
risk scores

Controlling for covariates, significant associations were found be‐
tween EEG activity in active sleep in all higher frequencies of in‐
terest (primarily in the frontal and parietal regions of the brain) and 
both BITSEA problem and BITSEA competence scores; however, 

TA B L E  1   Descriptive statistics

  Mean (SD; Range) or N (%)

Gestational age at birth 39.42 weeks (1.1; 
37.14–41.86)

Age at assessment 30.29 months (4.3; 24–36)

Sex  

Male 55 (42.6%)

Female 74 (57.4%)

Parental education 15.06 years (2.1; 10–18)

   

MCHAT 0.37 (0.8; 0–4)

BITSEA problem 8.69 (5.0; 0–32)

BITSEA competence 18.67 (2.2; 12–22)

BITSEA ASD Risk 3.43 (2.7; 0–18)

PARCA‐R cognitive 28.21 (4.0; 14–34)

PARCA‐R linguistic 82.42 (29.1; 1–124)
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after running false discovery rate (FDR) to correct for multiple com‐
parisons, significance did not hold. Even after multiple comparison 
correction, BITSEA ASD Risk scores were significantly linked to 
higher‐frequency EEG power in all higher frequencies of interest ex‐
cept within 37–48 Hz. Specifically, lower BITSEA risk scores were 
significantly associated with increased EEG power in right frontal 
polar (13–15, 16–18, and 22–24  Hz), left parietal (13–36  Hz), and 
right temporal (13–15, 16–18, 22–24, and 25–36 Hz) brain regions 
(Table 2, Figure 1).

3.3 | Sex‐specific analyses

As sex‐specific effects have been reported relating to ASD and 
other neurodevelopmental disorders (Clark, Barry, McCarthy, & 
Selikowitz, 2001; Werling & Geschwind, 2013), analyses were then 
rerun for males (N = 55) and females (N = 74) separately. For males, 
when controlling for gestational age at birth, maternal education, 
and age at the time of second assessment, significant FDR‐corrected 
associations were between neonatal EEG power and both BITSEA 
competence and ASD risk scores. Specifically, higher BITSEA com‐
petence scores were associated with: increased higher‐frequency 
EEG power in the right frontal polar (13–36 Hz), left frontal polar 
(16–18 Hz, 22–36 Hz), right frontal (13–18 Hz, 22–24 Hz), left frontal 
(13–18 Hz, 22–36 Hz), left parietal (13–24 Hz), right temporal (13–
36 Hz), and left occipital (13–36 Hz) brain regions (Table 3, Figure 2). 
Lower BITSEA ASD Risk scores were significantly associated with: 
increased EEG power in right temporal (13–36 Hz), and right fron‐
tal (22–24 Hz) brain regions. No FDR‐corrected associations were 
found between any of the BITSEA scores and the 37–48  Hz fre‐
quency range. Additionally, for males, there were no significant 
associations between neonatal EEG and the other developmental 
assessments.

For females, no FDR‐corrected associations were found for neo‐
natal EEG and BITSEA scores (Figure 1) or any of the other develop‐
mental assessments.

3.4 | Post hoc analyses: EEG asymmetry

Past studies have reported that individuals with ASD often show ab‐
normal hemispheric asymmetry. To probe if the association between 
neonatal EEG and BITSEA scores were driven by differences in lat‐
eralization, asymmetry values were calculated (difference between 
right and left power values in each brain region of interest). No sig‐
nificant correlations were found among any of the asymmetry values 
and BITSEA scores (Problem, Competence, or ASD Risk).

3.5 | Exploratory analyses in lower frequencies

Although hypotheses were proposed specifically for higher fre‐
quencies, to gain a more complete picture of how oscillations of 
varying rates may impact development, exploratory analyses were 
completed to examine correlations in within the lower frequencies 
(1–12 Hz). Significant correlations were found for right frontal power 
(1–3 Hz) to PARCAR‐R Linguistic scores and EEG power (left frontal 
polar, left frontal, and left parietal) to BITSEA competency scores, 
but these did not survive FDR correction. EEG power (left frontal 
polar, left parietal, and right temporal) within 4–12 Hz were signifi‐
cantly linked to BITSEA ASD Risk scores, but only 10–12 Hz in the 
left parietal and right temporal brain regions passed multiple com‐
parisons correction.

4  | DISCUSSION

The aim of the current study was to examine whether neonatal 
EEG was associated with later neurodevelopmental outcomes, 
particularly those related to ASD‐specific behaviors during tod‐
dlerhood. We found no significant associations between neona‐
tal EEG power and later outcome scores for the MCHAT‐R/F or 
PARCA‐R cognitive assessments. We did find significant associa‐
tions among neonatal EEG power for higher frequencies in frontal 
polar, temporal, and parietal brain regions and the ASD risk score 
from the BITSEA assessment. Specifically, we found that increased 
EEG power was associated with lower autism risk, consistent 
with our hypothesis that children at risk for neurodevelopmental 
disorders would have reduced neonatal EEG power. Rerunning 
analyses separately for each sex, no significant links were found 
between neonatal EEG and later developmental outcomes for fe‐
males, but analyses yielded significant correlations for males. For 
males, higher EEG power within higher frequencies was related to 
both higher BITSEA socioemotional competence scores and lower 
BITSEA ASD risk scores.

While several significant results were found when examin‐
ing the BITSEA socioemotional scores, no significant associations 
were discovered between neonatal EEG and later outcomes in the 
PARCA‐R or MCHAT‐R/F scores. Despite previous research show‐
ing positive correlations between EEG power at birth and 12‐ (Levin 
et al., 2017) and 15‐month language outcomes (Brito et al., 2016), 
we found no associations between neonatal EEG and PARCA‐R 

TA B L E  2   BITSEA ASD risk results by frequencies

Brain region
EEG frequency 
range (Hz)

Coefficient (p‐value; 
adjusted R2)

Right Frontal 
Polar

13–15 −0.247 (0.012; 0.13)

16–18 −0.292 (0.003; 0.16)

22–24 −0.288 (0.003; 0.15)

Left Parietal 13–15 −0.245 (0.010; 0.11)

16–18 −0.263 (0.006; 0.11)

19–21 −0.252 (0.008; 0.11)

22–24 −0.255 (0.007; 0.11)

25–36 −0.230 (0.015; 0.10)

Right Temporal 13–15 −0.222 (0.12; 0.13)

16–18 −0.215 (0.015; 0.12)

22–24 −0.229 (0.009; 0.133)

25–36 −0.222 (0.011; 0.130)
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linguistic or cognitive scores. Prior studies reporting these links 
had used experimenter elicited/observed language measures (Levin 
et al., 2017: Mullen Scales of Early Learning; Brito et al., 2016: 
Preschool Language Scale); parent report assessments of vocabu‐
lary and linguistic complexity could potentially be biased and have 
led to decreased variability within the scores. Similarly, no significant 
associations were found between neonatal EEG and MCHAT‐R/F 
scores. The MCHAT is a short assessment with only 24 questions 
but has demonstrated high sensitivity and specificity for a level 1 
ASD screening tool (Robins et al., 2014). Since only 1 in 68 chil‐
dren will most likely be diagnosed with autism (Christensen et al., 
2016), we could not expect to have a high number of children dis‐
playing overt behavioral symptoms typical of ASD out of our small 
participant pool. Only 3 of the 129 participants failed the follow‐up 
MCHAT‐R/F assessment, thus there was not enough data to make 
any statement regarding EEG values at birth and later MCHAT ASD 
outcomes.

In addition to spectral power differences, past studies have re‐
ported that individuals with ASD often show abnormal hemispheric 
asymmetry, with more power in the left compared with the right 
hemisphere across various frequency bands (Gabard‐Durnam, 
Tierney, Vogel‐Farley, Tager‐Flusberg, & Nelson, 2015; Stroganova 
et al., 2007; Sutton et al., 2005). Gabard‐Durnam et al. (2015) re‐
ported left frontal asymmetry for 6‐month‐old infants at higher risk 
for ASD (i.e., infants who had older siblings with ASD) relative to 
low‐risk infants who demonstrated right frontal asymmetry. The 
researchers noted that low‐risk children followed a developmental 

pattern of initial relative right frontal asymmetry toward relative 
left frontal asymmetry, whereas the high‐risk children showed the 
opposite pattern. Interestingly, there were no group differences in 
asymmetry values at 18 months of age (Gabard‐Durnam et al., 2015). 
Within the current study, post hoc analyses were conducted exam‐
ining links between asymmetry and developmental outcomes at 24 
to 36 months, but no significant associations were found. As past 
studies have reported reduced coherence among individuals with 
ASD between frontal regions and all other scalp regions (Murias, 
Webb, Greenson, & Dawson, 2007) and poor interhemispheric 
connectivity (Isler, Martien, Grieve, Stark, & Herbert, 2010), future 
studies should also examine EEG coherence and relative power in 
addition to absolute power values. Within our current analyses, as 
the most significant findings we found were in the right frontal polar 
and left parietal brain regions, it would be interesting to systemati‐
cally examine inter‐region connectivity in future analyses in children 
at higher risk for autism compared to those at lower risk.

The current findings demonstrate some potential associa‐
tions between early neural biomarkers and later risk for ASD. 
Parental report BITSEA scores have been shown to predict emo‐
tional/behavioral problems in early elementary school (Briggs‐
Gowan & Carter, 2008) and a recent study found that the BITSEA 
had good discriminative power to differentiate children with and 
without ASD and may therefore be helpful in the detection of 
early neurodevelopmental risk in relation to ASD (Kruizinga et 
al., 2014). Interestingly, significant associations within the cur‐
rent study were found for males and not females, mimicking the 

F I G U R E  1   Each panel displays the scalp topography of 1—p‐values (upper) and beta coefficients (lower) for EEG power in active sleep 
and BITSEA autism risk scores. Panel (a) displays 13–15 Hz, Panel (b) displays 16–18 Hz, Panel (c) displays 22–24 Hz, and Panel (d) displays 
25–36 Hz
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sex differences often reported in ASD studies. Here we show 
links between higher‐frequency oscillations, particularly in the 
frontal polar, parietal and temporal regions, and potential risk 
for ASD, with reduced EEG power associated with increased 
risk. Examining higher frequencies within the EEG literature, 
gamma oscillations have been implicated in in cognitive and 
sensory processing (Lee & Jones, 2013; Tiesinga & Sejnowski, 
2009), and while the beta frequency range has most prominently 
been related to sensorimotor activity (Hari & Salmelin, 1997), 
it has increasingly been associated with a wider range of cog‐
nitive functions, including visual perception (Kloosterman et al., 

2014), language processing (Weiss & Mueller, 2012), and memory 
(Hanslmayr, Staresina, & Bowman, 2016). The results from this 
study support previous findings with both typical children (Brito 
et al., 2016; Gou et al., 201; Williams et al., 2012) and children 
at higher risk for ASD (Levin et al., 2017; Tierney et al., 2012) 
and suggest that links between EEG activity within higher fre‐
quencies (i.e., over 13 Hz) may be associated with individual dif‐
ferences in developmental outcomes reflective of higher‐order 
cognitive processing. Although parental report may not always 
accurately reflect a child's true status, the BITSEA does have 
a strong predictive validity, with early BITSEA ratings strongly 

  Brain region
EEG frequency 
range (Hz) Coefficient (p‐value; adjusted R2)

BITSEA 
competence

Right frontal‐polar 13–15 0.455 (0.004; 0.17)

16–18 0.548 (0.001; 0.25)

19–21 0.450 (0.007; 0.15)

22–24 0.520 (0.001; 0.21)

25–36 0.493 (0.003; 0.18)

Left frontal polar 16–18 0.441 (0.008; 0.13)

22–24 0.410 (0.016; 0.10)

25–36 0.463 (0.007; 0.14)

Right frontal 13–15 0.347 (0.016; 0.10)

16–18 0.370 (0.01; 0.12)

22–24 0.370 (0.009; 0.12)

Left frontal 13–15 0.401 (0.007; 0.11)

16–18 0.474 (0.001; 0.17)

22–24 0.406 (0.008; 0.11)

25–36 0.390 (0.012; 0.09)

Left parietal 13–15 0.473 (0.002; 0.20)

16–18 0.536 (0.0004; 0.25)

19–21 0.483 (0.002; 0.20)

22–24 0.463 (0.002; 0.20)

Right temporal 13–15 0.424 (0.004; 0.16)

16–18 0.451 (0.002; 0.18)

19–21 0.455 (0.002; 0.18)

22–24 0.507 (0.0004; 0.24)

25–36 0.462 (0.001; 0.21)

Left occipital 13–15 0.456 (0.002; 0.19)

16–18 0.519 (0.0003; 0.26)

19–21 0.506 (0.001; 0.24)

22–24 0.505 (0.001; 0.24)

25–36 0.445 (0.003; 0.19)

BITSEA ASD 
risk

Right frontal 22–24 −0.398 (0.004; 0.17)

Right temporal 13–15 −0.452 (0.002; 0.17)

16–18 −0.456 (0.002; 0.17)

19–21 −0.443 (0.004; 0.16)

22–24 −0.502 (0.0005; 0.22)

25–36 −0.458 (0.001; 0.20)

TA B L E  3   BITSEA results by 
frequencies for males only
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correlated with later ratings (Briggs‐Gowan & Carter, 2008; 
Briggs‐Gowan & Carter, 2002).

This is the first study, to our knowledge, to capitalize on neo‐
natal EEG measures to examine early electrophysiology and subse‐
quent parental report of neurodevelopmental disorder risk, but it 
is important to note limitations with the current study. First, we do 
not have a measure of whether these children do go on to be diag‐
nosed with ASD or any other neurodevelopmental disorder. These 
are correlational results and cannot be treated as deterministic on 
any level. Rather, these results suggest that reduced EEG power in 
the higher frequencies may indicate an increase in an individual's 
susceptibility for later atypical symptoms or delays in behaviors. As 
such, neonatal EEG activity may be a suitable biomarker to iden‐
tify children who may be at a higher risk of neurodevelopmental 
disorders, but this does not mean that these children will go on to 
develop these conditions. Second, although there was variation in 
maternal educational attainment within the sample, as infants were 
primarily from middle to upper‐middle‐class Caucasian families, this 
study needs to be replicated within a larger cohort of infants from a 
wider range of socioeconomic backgrounds and experiences. As we 
excluded infants who were born before 37 weeks gestational age or 
admitted to the NICU at birth, this resulted in a sample of infants 
with potentially fewer adverse prenatal exposures, for example, al‐
cohol, smoking, recreational drugs, and/or psychiatric medications. 
In other studies, infants with high prenatal exposure to alcohol 
have been shown to demonstrate hypersynchrony, resulting in sig‐
nificantly higher power in a wide range of frequencies (Chernick, 
Childiaeva, & Ioffe, 1983; Havlicek, Childiaeva, & Chernick, 1977; 

Stephen et al., 2018), therefore the directionality of EEG power and 
developmental outcomes may vary based on the characteristics of 
the sample.

ASD is typically diagnosed around 4 years of age, at which point 
the opportunity for very early intervention has been missed. Early 
intervention alters brain development and results in developmen‐
tal gains in communication, social interaction, and cognitive ability 
(Woods & Wetherby, 2003). Implementing routine noninvasive EEG 
data collection at birth and/or at well‐baby visits could provide an 
easily attainable rich source of data. Baseline EEG could be used as 
major component of a screening profile for infants at high risk of 
developing neurodevelopmental disorders and could facilitate in‐
tervention for the highest risk infants before behavioral symptoms 
emerge. Diagnosing children after infancy deprives them of the op‐
portunity to benefit from effective early interventions. Determining 
a profile of perinatal, neonatal, and social risk factors linked to the 
development of neurodevelopmental disorders will help researchers 
and clinicians better target prevention, early diagnosis, and early in‐
tervention efforts.
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